The Condensing Effect of Cholesterol in Lipid Bilayers

Wei-Chin Hung, Ming-Tao Lee, Fang-Yu Chen, and Huey W. Huang

ABSTRACT The condensing effect of cholesterol on phospholipid bilayers was systematically investigated for saturated and unsaturated chains, as a function of cholesterol concentration. X-ray lamellar diffraction was used to measure the phosphate-to-phosphate distances, PtP, across the bilayers. The measured PtP increases nonlinearly with the cholesterol concentration until it reaches a maximum. With further increase of cholesterol concentration, the PtP remains at the maximum level until the cholesterol content reaches the solubility limit. The data in all cases can be quantitatively explained with a simple model that cholesterol forms complexes with phospholipids in the bilayers. The phospholipid molecules complexed with cholesterol are lengthened and this lengthening effect extends into the uncomplexed phospholipids surrounding the cholesterol complexes. This long-range thickening effect is similar to the effect of gramicidin on the thickness of lipid bilayers due to hydrophobic matching.

INTRODUCTION

One property that makes cholesterol (and similar sterols) unique among the lipid molecules is its condensing effect on phospholipids in mixtures. This effect was first discovered in monolayer experiments at the air-water interface (1–3) where the area per phospholipid was found to decrease in the presence of cholesterol. The corresponding effect was also found in lipid bilayers. Levine and Wilkins (4) performed the first comprehensive x-ray study on lipid bilayers that included hydrocarbon chain diffraction measuring the orientation distribution of chain segments as well as lamellar diffraction measuring the electron density profiles across the bilayers. Comparing egg lecithin bilayers with mixed bilayers of egg lecithin and cholesterol, they found that cholesterol has the effect of making the hydrocarbon chain segments orient perpendicularly to the plane of the bilayer. Consistent with this effect, cholesterol also increased the phosphate-to-phosphate distance across the bilayer. Subsequently the thickening effect of cholesterol on various phospholipids has been measured by a number of investigators (5–10).

Clearly the condensing effect is more than the molecular interaction between cholesterol and phospholipid. In monolayers, cholesterol causes the area per phospholipid to decrease in a nonideal fashion as a function of cholesterol concentration (1–3). As far as we know this nonideal behavior has not been systematically measured in lipid bilayers. In this article we performed lamellar diffraction to measure the thicknesses of three different mixed bilayers of cholesterol and phospholipids as a function of cholesterol concentration: one phospholipid with two saturated chains, one with two unsaturated chains, and another with one of each. We found that all three mixed bilayers increased the thickness with the cholesterol concentration. But the thickness increase is not in proportion to the cholesterol concentration. We will explain this nonlinear condensing effect in terms of a persistence length intrinsic to the elasticity of lipid bilayers, similar to the bilayer thickness modulation due to hydrophobic matching to gramicidin when the latter was incorporated in lipid bilayers (11–13). In many ways, the effect of cholesterol to lipid bilayers is similar to that of gramicidin.

The phase diagrams of liquid-liquid miscibility critical points observed in the monolayer experiments of cholesterol-phospholipid mixtures have been successfully explained by the concept of complex formation (14–19). The interactions of cholesterol and phospholipids at low monolayer pressure are rather complicated because the complexing reaction is reversible. We believe that cholesterol in lipid bilayers, which correspond to monolayers at high surface pressure, is favored to be in the complex form with a negligible rate for decomplexing. This makes it simpler to understand the condensing effect in lipid bilayers.

EXPERIMENTAL METHODS

Materials

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoylsn-glycero-3-phosphocholine (SOPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (abbreviated as chol in sample compositions) were purchased from Avanti Polar Lipids (Alabaster, AL). Polyethylene glycol (PEG400) was purchased from Merck (Hohenbrunn, Germany). All materials were used as delivered.

Sample preparation

The samples were prepared in the form of oriented multilayers, a stack of parallel lipid bilayers on a solid substrate, the same as used by Levine and
The sample for diffraction measurement was kept in a thermally insulated chamber (±0.1°C) that was equipped with mylar windows for x-ray passage. The chamber also enclosed a PEG solution for humidity control (20). The relative humidity corresponding to a PEG solution was measured by a hygrometer (purchased from Rotronic Instrument, Huntington, NY) in a calibration chamber provided by the manufacturer. For example, 1.0 g of PEG400 dissolved in 4.0 g of water gave a vapor pressure equivalent to 98% relative humidity (RH) at 30°C.

The diffractometer consisted of a two-circle goniometer and a Cu Kα radiation source filtered by Ni and operated at 40 kV / 30 mA. The two-circle goniometer was designed for vertical sample running that would otherwise occur if the substrate were oriented vertically in a horizontal θ–2θ scan experiment. Both the incident and the diffracted x-rays were collimated by two sets of x-y slits. An attenuator was used below 2θ = 10.5° (the attenuation factor is 10.5). The pattern of pure cholesterol. The patterns were measured by θ–2θ scan and an attenuator was used below 2θ = 2.5° (the attenuation factor is 10.5). The patterns above θ = 0.44 for chol/DMPC, x = 0.47 for chol/SOPC, and x = 0.40 for chol/DOPC all contain pure cholesterol peaks.

RESULTS

In Fig. 1 we display the diffraction patterns measured at 30°C and 98% RH for three series of chol/DMPC, chol/SOPC, and chol/DOPC mixtures. The mol fraction of cholesterol x is defined as C/(C+L), where C and L are the numbers of cholesterol and phospholipid molecules, respectively, in the sample. The condensing effect will be analyzed based on these measurements. When RH exceeded 98% RH, the diffraction patterns of pure PC began to lose higher orders and concomitantly the diffraction peaks began to broaden (see, for example, Chen et al. (23)). It is well known that this is due to undulation fluctuations of membranes (25). This phenomenon is common to pure phospholipids. A small osmotic pressure equivalent to 98% RH diminished the undulation fluctuations, thus allowing a more accurate measurement of the electron density profile (23). However, with a cholesterol content exceeding the mol fraction x ~ 0.1, the undulation phenomenon disappeared even at full hydration (Fig. 2). It has been known since Levine and Wilkins (4) that the electron density profiles of cholesterol-containing membranes are independent of hydration. Indeed cholesterol has been called a membrane thickness buffer (26). Thus the reason we compare the bilayer thickness at 98% RH, rather than 100% RH, is for the sake of pure PC bilayers. The cholesterol-containing lipid bilayers can be measured at 100% RH without difficulty. The results are the same as measured at 98% RH (see below).
Chol/DMPC mixtures

The first column of Fig. 1 shows the diffraction patterns of chol/DMPC mixtures from \(x = 0 \) (pure PC) to \(x = 1 \) (pure cholesterol). The pattern on the top is that of pure cholesterol in a crystalline form; cholesterol formed crystals on the substrate as the organic solvent evaporated (see sample preparation).

We know that pure DMPC at 30°C and 98% RH was in the fluid (L\(_a\)) phase, exhibiting six diffraction orders. If the hydration level were decreased, DMPC would undergo a phase transition to a gel (L\(_b\)) phase exhibiting nine or more orders (27). To see which phase the chol/DMPC mixtures were in, we measured the diffraction patterns of \(x = 0.09 \) and \(x = 0.17 \) over a wide range of RH (Fig. 3). For \(x = 0.09 \) at 30°C, we see that there is a high-order to low-order transition similar to a gel-fluid transition at 95.1% RH, where two series of lamellar patterns coexisted. At 34°C the transition occurred at 85.1% RH. Such transitions were not detected for \(x = 0.17 \), where diffraction patterns showed nine or more orders at all humidity levels at 30 and 38°C. Thus we conclude that at 30°C and 98% RH, the chol/DMPC mixture of \(x = 0.09 \) is in the fluid-like state whereas the chol/DMPC mixtures of \(x \geq 0.17 \) are in the gel-like state.

From \(x = 0.23 \) to \(x = 0.44 \), the diffraction patterns are similar, only the peak intensities systematically vary with \(x \). (A very small peak of unknown origin, at \(2\theta \sim 5.7^\circ \), between the third and the fourth peak appeared in all these samples; it will be ignored.) For \(x > 0.44 \), the patterns include crystalline cholesterol peaks indicating the presence of phase-separated cholesterol domains. Thus in the multilayer preparations, the cholesterol solubility in DMPC bilayers is \(~44\%\) in mol fraction. This is comparable to the cholesterol solubility in DMPC measured in aqueous dispersions (28).

Chol/SOPC mixtures

The diffraction patterns change gradually and systematically from pure SOPC to \(x = 0.47 \). The patterns for \(x > 0.47 \) contain cholesterol peaks, indicating the presence of phase-separated cholesterol domains. The solubility of cholesterol in SOPC multilayers is \(~47\%\) in mol fraction.

Chol/DOPC mixtures

The diffraction patterns change gradually and systematically from pure DOPC to \(x = 0.40 \). The patterns for \(x > 0.40 \) contain cholesterol peaks, indicating the presence of phase-separated cholesterol domains. The solubility of cholesterol in DOPC multilayers is \(~40\%\) in mol fraction.

Electron density profiles and phosphate peak-to-phosphate peak distance \(P_tP \)

Each lipid sample shown in Fig. 1 was measured over a range of hydration from \(~94\%\) RH to \(~98\%\) RH so as to use the swelling method (24) to determine the phases. An example of phasing diagrams is shown in Fig. 4. With the phases determined, the amplitudes from the diffraction patterns were used to construct the transbilayer electron density.
profiles (Fig. 5). The quality of these electron density profiles is comparable to previously published profiles of cholesterol-containing lecithin bilayers that were measured by Franks, Worcester, and Lieb with great care (6,7,26). The distance between the two phosphate peaks across the bilayer (P_{tP}) is plotted for each type of mixture as a function of the mol fraction of cholesterol x (Fig. 6). The error bars of P_{tP} represent the ranges of values obtained by four to five independent measurements. The errors are generally $\pm 0.1 \, \text{Å}$ or smaller.

DISCUSSION

The effect of cholesterol on membrane thickness

As expected from previous measurements (4–10), cholesterol increases the thickness of phospholipid bilayers. Because the chain volume is conserved during chain stretching (this was recently demonstrated experimentally (29)) the thickness increase is directly correlated to the decrease in lipid area, or the condensing effect (Fig. 7). For each type of chol/PC mixture, the P_{tP} increases monotonically from that of pure PC to a maximum. The maximum thickness, however, depends on the PC. It is worth noting that the maximum is reached at a mol fraction less than the solubility of cholesterol. The solubilities of cholesterol in DMPC, SOPC, and DOPC multilayers are, respectively, $x_{\text{sol}} = 0.44$, 0.47, and 0.40 corresponding to $C/L_{\text{sol}} = 0.80, 0.89$, and 0.68. But in each case, the maximum thickness is reached at $x_o \approx 0.38$, equivalent to $(C/L)_{\text{max}} \approx 0.6$.

The condensing effect and a phenomenological analysis

Between the thickness of pure PC ($P_{tP_{pc}}$) and the maximum thickness ($P_{tP_{max}}$), the increase as a function of the cholesterol content x is not linear. The hypothetical linear increase is shown as a dotted line for each mixture in Fig. 6 A1. (Note that the dotted lines do not correspond to ideal mixing. An ideal mixing corresponds to the total lipid area being equal to the linear sum of the areas of two components, pure cholesterol and pure PC.) Phenomenologically the data can be fit quite well with the following formula

$$P_{tP} = P_{tP_{pc}} \left(1 - \frac{x}{x_o} \right) + P_{tP_{max}} \frac{x}{x_o} + \gamma \frac{x}{x_o} \left(1 - \frac{x}{x_o} \right),$$

where x_o is defined as the cholesterol mol fraction when the thickness reaches the maximum. The comparison of the fit with data is shown in Fig. 6 A1 and, more closely, in Fig. 6 A2. The hypothetical linear increases (the dotted lines in Fig. 6 A1) are described by the first two terms of Eq. 1. Here we assume that the phospholipid molecules directly neighboring a cholesterol molecule are in the maximum thickness $P_{tP_{max}}$. In the next section, we will discuss evidence that such thickening effect extends into surrounding cholesterol-free regions over a range determined by the elastic constants of the lipid bilayer. The contribution to the averaged P_{tP} by the long-range thickening effect is proportional to the cholesterol content x/x_o and also proportional to the availability of

![Figure 4: An example of phasing diagram. Diffraction by a sample was measured over a range of RH so as to obtain the scattering amplitudes at a series of different lamellar spacings. The scattering amplitudes are either positive or negative. The phases are chosen such that the continuous form factor (solid curve) constructed from one set of data at one lamellar spacing goes through all other sets of data (24).](image)

![Figure 5: Electron density profiles constructed from the diffraction data plotted over one unit cell. Separate profiles are displaced vertically for clarity; z is the coordinate normal to the plane of the bilayer. The origin is chosen at the center of the bilayer. The highest peak on each side is the location of the phosphate group. The phosphate peak-to-phosphate peak distance can be measured very accurately.](image)
cholesterol-free phospholipids \((1 - x/x_0)\). That explains the third term of Eq. 1 with a constant \(g\). This phenomenological analysis will now be interpreted in terms of cholesterol complexes.

Cholesterol complex and its long-range effect

The condensing effect gave rise to the idea of cholesterol forming complexes with phospholipids (28,30). In particular the idea explained the observation of pairs of upper miscibility critical points in monolayers of cholesterol-phospholipid mixtures at the air-water interface under low surface pressure (14–19). However, the stoichiometry of the complexes is not definite. It was described as (15,16)

\[
qC + pL \leftrightarrow C_q L_p,
\]

with unknown values of \(p\) and \(q\). In monolayers, Radhakrishnan and McConnell (16) showed that complexing occurs only at temperatures below the gel-fluid transition temperature of the phospholipid. For example, complexing of cholesterol and DMPC was observed in monolayers at 13°C but not in room temperature (the fluid-gel transition temperature of DMPC is \(-23°C\)). Furthermore all complexing phenomena in monolayers were observed at surface pressure below 20 dyn/cm, the pressure considered to be the closest mimic of the corresponding bilayers (16).

The simplest way to understand the condensing effect in lipid bilayers is to assume that in lipid bilayers cholesterol forms complexes with phospholipids practically at all time, namely, the reverse (right to left) reaction in Eq. 2 is negligible. Our experimental results are consistent with cholesterol dispersed uniformly in the bilayer. The simplest model has \(q = 1\). We assume that when the cholesterol content reaches \(x_0\), all phospholipid molecules are complexed with cholesterol. Thus the stoichiometric ratio for the complex is \(p/q = p = (1 - x_0)/x_0 \approx 0.62/0.38 \approx 1.6\). Complexing is not forming a chemical bond. The complexing stoichiometry may fluctuate; \(p\) is an average number. The total number

![FIGURE 6](image-url)
of the complexed lipid molecules, including phospholipid and cholesterol, is \((p+1)C = N(p+1)x = N\chi_0\), with \(N = C + L\). The total number of the cholesterol-free, or uncomplexed phospholipid molecules is \(N(1 - x/x_0)\).

The averaged \(PtP\) is qualitatively explained as follows. Let \(z\) be the coordinate normal to the bilayer with the origin at the bilayer center. Let the electron density corresponding to the phosphate peak of the uncomplexed phospholipid molecules be \(w_1 \exp\left[-(z - z_1)^2/\sigma^2\right]\), where \(z_1\) is the peak position, \(\sigma\) the width of the peak, and \(w_1\) the weight proportional to the total electrons contributing to the peak; and the phosphate peak of the cholesterol complexes be \(w_2 \exp\left[-(z - z_2)^2/\sigma^2\right]\). Provided \(z_2 - z_1\) is substantially smaller than the width \(\sigma\), the combination of the two peaks will produce a new peak at \(z \approx (w_1z_1 + w_2z_2)/(w_1 + w_2)\). In Eq. 1, \(PtP_{pc}\) and \(PtP^*\) correspond to \(z_1\) and \(z_2\), respectively. Equation 1 is obtained if \(w_1\) is proportional to the number of uncomplexed phospholipid molecules \(N(1 - x/x_0)\) and \(w_2\) proportional to the number of the complexed lipid molecules, including phospholipid and cholesterol, \(N\chi_0/x_0\). This reproduces the first two terms of Eq. 1. The third term proportional to the product of the two weights \(w_1w_2/\left(w_1 + w_2\right)^2\) will be discussed below. Although this model reproduces the phenomenological Eq. 1, it assumes that a cholesterol molecule and a phospholipid molecule in the complex contribute equally to the phosphate peak, which is difficult to justify.

In principle, the weight \(w_2\) should include only the complexed phospholipid molecules whose number is \(pC = Npx = N(1 - x_0)x/x_0\), while \(w_1\) is proportional to the number of uncomplexed phospholipid molecules \(N(1 - x/x_0)\). They should be normalized by the total number of phospholipid molecules \(N(1 - x)\). Then according to the formula \(\bar{z} \approx (w_1z_1 + w_2z_2)/(w_1 + w_2)\), the Eq. 1 should be modified to

\[
PtP = PtP_{pc} + \frac{1}{1 - x} \left(1 - \frac{x}{x_0}\right) + PtP^* \left(1 - \frac{x}{x_0}\right)
\]

(3)

The fits of Eq. 3 to the data are shown in Fig. 6, B1 and B2. Both Eqs. 1 and 3 still hold if, for example, \(q = 2\), with \(p\) changes to \(p/2 \approx 1.6\), and so forth. This stoichiometry 2:3:2 for the cholesterol-phospholipid complex determined from the bilayer experiments is very close to the stoichiometry 2:3 determined from monolayer experiments (16).

The modification of the bilayer thickness by cholesterol is similar to the phenomenon of hydrophobic matching to gramicidin channels. A gramicidin channel is a cylindrically shaped dimer with an external hydrophobic surface \(-18\) Å in diameter and \(21.7\) Å in height (31, 32). A previous experiment found that, when gramicidin was incorporated in lipid bilayers at the peptide/lipid molar ratio 1:10, the \(PtP\) of DLPC (di12:0PC) increased from \(30.8\) Å without gramicidin to \(32.1\) Å with gramicidin, and the \(PtP\) of DMPC (di14:0PC) decreased from \(35.3\) Å without gramicidin to \(32.7\) Å with gramicidin (12). We know that to a very good approximation, the thickness of the hydrocarbon region is \(PtP - 10\) Å (27, 33, 34). Thus the experiment showed that both the hydrocarbon regions of DLPC and DMPC were approaching the hydrophobic thickness of the gramicidin surface \(-22\) Å. This results show that not only the lipids in contact with gramicidin match their chain lengths to the hydrophobic surface of gramicidin, the effect must extend to the surrounding lipids as well, because the overall thickness of the entire bilayer was approaching the hydrophobic length of gramicidin.

If the hydrocarbon region locally changes its thickness to match the gramicidin’s hydrophobic surface, we can use the elasticity theory to calculate the response in the rest of the bilayer (35). The well-established Helfrich energy for membrane deformation (per unit area) can be written as \(E_h = (K_a/2)(6h)^2 + (K_c/8)(\nabla^2 h)^2\), where \(h\) is hydrocarbon thickness, and \(K_a\) and \(K_c\) are, respectively, the stretch and bending moduli. The calculated bilayer deformation due to hydrophobic matching to gramicidin extends to the surrounding lipids over a range \(\xi = (16h^2K_c/K_a)^{1/4}\) (35), which is \(20–30\) Å depending on the values of \(K_a\) and \(K_c\). The calculated energy of deformation agreed with the shortening of gramicidin channel lifetime as a function of membrane thickness increase (32, 35).

Cholesterol complexing apparently straightens and therefore lengthens the lipid chains (4). This is similar to hydrophobic matching to a surface longer than the normal chain length. Thus we expect that the cholesterol-complexed phospholipids extend the thickening effect, as in the case of hydrophobic matching, to surrounding uncomplexed phospholipid molecules. This effect is stochastic because the distribution of cholesterols is random, as one can see in gramicidin.
simulations (Fig. 2 of Harroun et al. (13)); the regions of uncomplexed phospholipid molecules vary in size and shape, and vary with time. The size of some uncomplexed regions may be larger than the persistence length \(\xi \) of the thickening effect, but some may be smaller. In average the effect is proportional to the number of the sources, i.e., the complexed lipids, and also proportional to the number of the targets, i.e., the uncomplexed lipids. Hence we have the third terms in Eqs. 1 and 3, respectively.

To view this extended thickening effect, we show \(\delta PtP \) defined as the difference between the data and the first two terms, and compare it with the third term in Fig. 6 A2 for Eq. 1 and in Fig. 6 B2 for Eq. 3. Note that given the pure PC and the maximum thicknesses \(PtP_{pc} \) and \(PtP^* \), there is no adjustable parameter in the first two terms of either equation. Each curve was fit with only one constant parameter \(\gamma \) in the third term. The fits by Eq. 1 are good but slightly, nevertheless significantly, deviate from the data for DMPC (Fig. 6 third term. The fits by Eq. 1 are good but slightly, never-

Each curve was fit with only one constant parameter in the first two terms of either equation. Eqs. 1 and 3, respectively.

For Eq. 3 provides the feature of asymmetry exhibited by the data. Based on the current data alone, it seems as if the correct interpretation for the concentration dependence lies somewhere between Eqs. 1 and 3. However, the fits by Eq. 3 are not as good (the reduced \(\chi^2 \)-square is given to compare the goodness of fit in Fig. 6. A2 and B2). Therefore, Eq. 3 provides the feature of asymmetry exhibited by the data. Based on the current data alone, it seems as if the correct interpretation for the concentration dependence lies somewhere between Eqs. 1 and 3.

Because the saturated chains can be fully straightened, it is not surprising that DMPC has the largest thickness increase (\(PtP^* - PtP_{pc} \)). However the thickness increases of SOPC (with one unsaturated chain) and DOPC (with two unsaturated chains) are only ~20% smaller than that of DMPC.

What distinguishes the three lipids is the coefficient of the extended thickening effect \(\gamma \); there is a factor of 1.5–2.0 decrease from DMPC to SOPC and another factor of 1.5–2.0 decrease from SOPC to DOPC.

One more aspect of similarity between the effects of cholesterol and gramicidin needs to be mentioned. Both the cholesterol-containing phospholipid bilayers and the gramicidin-containing phospholipid bilayers showed unvary-

FIGURE 8 Electron density profiles of cholesterol-containing phospholipid bilayers are independent of hydration from ~95% RH to 100% RH, in contrast to pure phospholipids whose profiles vary significantly in this range of RH (23). Separate profiles are displaced vertically for clarity. The dotted lines connecting the peak positions are vertical, indicating no change in the peak positions with hydration.

This work was supported by National Science Council (Taiwan) contract Nos. NSC95-2112-M-145-001 (to W.-C.H.), NSC95-2112-M-213-009 (to M.-T.L.), and NSC 94-2112-M-008-021 (to F.-Y.C.), and by National Institutes of Health grant No. GM55203 and the Robert A. Welch Foundation grant No. C-0991 (to H.W.H).

REFERENCES

Cholesterol Condensing Effect

